高一集合的知識點總結
高一集合是數學中的考點,但其實并不是十分的難,屬于理論題。下面高一集合的知識點總結是小編為大家?guī)淼,希望對大家有所幫助?/p>
高一集合的知識點總結
一.知識歸納:
1.集合的有關概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
、诩现械脑鼐哂写_定性(a?a和a?a,二者必居其一)、互異性(若a?a,b?a,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:n,z,q,r,n*
2.子集、交集、并集、補集、空集、全集等概念。
1)子集:若對x∈a都有x∈b,則a b(或a b);
2)真子集:a b且存在x0∈b但x0 a;記為a b(或 ,且 )
3)交集:a∩b={x| x∈a且x∈b}
4)并集:a∪b={x| x∈a或x∈b}
5)補集:cua={x| x a但x∈u}
注意:①? a,若a≠?,則? a ;
、谌 , ,則 ;
、廴 且 ,則a=b(等集)
3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
4.有關子集的幾個等價關系
①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;
、躠∩cub = 空集 cua b;⑤cua∪b=i a b。
5.交、并集運算的性質
、賏∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;
、踓u (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;
6.有限子集的個數:設集合a的'元素個數是n,則a有2n個子集,2n-1個非空子集,2n-2個非空真子集。
二.例題講解:
【例1】已知集合m={x|x=m+ ,m∈z},n={x|x= ,n∈z},p={x|x= ,p∈z},則m,n,p滿足關系
a) m=n p b) m n=p c) m n p d) n p m
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合m:{x|x= ,m∈z};對于集合n:{x|x= ,n∈z}
對于集合p:{x|x= ,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的數,而6m+1表示被6除余1的數,所以m n=p,故選b。
分析二:簡單列舉集合中的元素。
解答二:m={…, ,…},n={…, , , ,…},p={…, , ,…},這時不要急于判斷三個集合間的關系,應分析各集合中不同的元素。
= ∈n, ∈n,∴m n,又 = m,∴m n,
= p,∴n p 又 ∈n,∴p n,故p=n,所以選b。
點評:由于思路二只是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設集合 , ,則( b )
a.m=n b.m n c.n m d.
解:
當 時,2k+1是奇數,k+2是整數,選b
【例2】定義集合a*b={x|x∈a且x b},若a={1,3,5,7},b={2,3,5},則a*b的子集個數為
a)1 b)2 c)3 d)4
分析:確定集合a*b子集的個數,首先要確定元素的個數,然后再利用公式:集合a={a1,a2,…,an}有子集2n個來求解。
解答:∵a*b={x|x∈a且x b}, ∴a*b={1,7},有兩個元素,故a*b的子集共有22個。選d。
變式1:已知非空集合m {1,2,3,4,5},且若a∈m,則6?a∈m,那么集合m的個數為
a)5個 b)6個 c)7個 d)8個
變式2:已知{a,b} a {a,b,c,d,e},求集合a.
解:由已知,集合中必須含有元素a,b.
集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析 本題集合a的個數實為集合{c,d,e}的真子集的個數,所以共有 個 .
【例3】已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且a∩b={1},a∪b={?2,1,3},求實數p,q,r的值。
解答:∵a∩b={1} ∴1∈b ∴12?4×1+r=0,r=3.
∴b={x|x2?4x+r=0}={1,3}, ∵a∪b={?2,1,3},?2 b, ∴?2∈a
∵a∩b={1} ∴1∈a ∴方程x2+px+q=0的兩根為-2和1,
∴ ∴
變式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且a∩b={2},a∪b=b,求實數b,c,m的值.
解:∵a∩b={2} ∴1∈b ∴22+m?2+6=0,m=-5
∴b={x|x2-5x+6=0}={2,3} ∵a∪b=b ∴
又 ∵a∩b={2} ∴a={2} ∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合a={x|(x-1)(x+1)(x+2)>0},集合b滿足:a∪b={x|x>-2},且a∩b={x|1
分析:先化簡集合a,然后由a∪b和a∩b分別確定數軸上哪些元素屬于b,哪些元素不屬于b。
解答:a={x|-21}。由a∩b={x|1-2}可知[-1,1] b,而(-∞,-2)∩b=ф。
綜合以上各式有b={x|-1≤x≤5}
變式1:若a={x|x3+2x2-8x>0},b={x|x2+ax+b≤0},已知a∪b={x|x>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)
點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。
變式2:設m={x|x2-2x-3=0},n={x|ax-1=0},若m∩n=n,求所有滿足條件的a的集合。
解答:m={-1,3} , ∵m∩n=n, ∴n m
①當 時,ax-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0, }
【例5】已知集合 ,函數y=log2(ax2-2x+2)的定義域為q,若p∩q≠φ,求實數a的取值范圍。
分析:先將原問題轉化為不等式ax2-2x+2>0在 有解,再利用參數分離求解。
解答:(1)若 , 在 內有有解
令 當 時,
所以a>-4,所以a的取值范圍是
變式:若關于x的方程 有實根,求實數a的取值范圍。
解答:
點評:解決含參數問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。
三.隨堂演練
選擇題
1. 下列八個關系式①{0}= ② =0 ③ { } ④ { } ⑤{0}
⑥0 ⑦ {0} ⑧ { }其中正確的個數
(a)4 (b)5 (c)6 (d)7
2.集合{1,2,3}的真子集共有
(a)5個 (b)6個 (c)7個 (d)8個
3.集合a={x } b={ } c={ }又 則有
(a)(a+b) a (b) (a+b) b (c)(a+b) c (d) (a+b) a、b、c任一個
4.設a、b是全集u的兩個子集,且a b,則下列式子成立的是
(a)cua cub (b)cua cub=u
(c)a cub= (d)cua b=
5.已知集合a={ }, b={ }則a =
(a)r (b){ }
(c){ } (d){ }
6.下列語句:(1)0與{0}表示同一個集合; (2)由1,2,3組成的集合可表示為
{1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示為 {1,1,2}; (4)集合{ }是有限集,正確的是
(a)只有(1)和(4) (b)只有(2)和(3)
(c)只有(2) (d)以上語句都不對
7.設s、t是兩個非空集合,且s t,t s,令x=s 那么s∪x=
(a)x (b)t (c)φ (d)s
8設一元二次方程ax2+bx+c=0(a<0)的根的判別式 ,則不等式ax2+bx+c 0的解集為
(a)r (b) (c){ } (d){ }
填空題
9.在直角坐標系中,坐標軸上的點的集合可表示為
10.若a={1,4,x},b={1,x2}且a b=b,則x=
11.若a={x } b={x },全集u=r,則a =
12.若方程8x2+(k+1)x+k-7=0有兩個負根,則k的取值范圍是
13設集合a={ },b={x },且a b,則實數k的取值范圍是。
14.設全集u={x 為小于20的非負奇數},若a (cub)={3,7,15},(cua) b={13,17,19},又(cua) (cub)= ,則a b=
解答題
15(8分)已知集合a={a2,a+1,-3},b={a-3,2a-1,a2+1}, 若a b={-3},求實數a。
16(12分)設a= , b= ,
其中x r,如果a b=b,求實數a的取值范圍。
四.習題答案
選擇題
1 2 3 4 5 6 7 8
c c b c b c d d
填空題
9.{(x,y) } 10.0, 11.{x ,或x 3} 12.{ } 13.{ } 14.{1,5,9,11}
解答題
15.a=-1
16.提示:a={0,-4},又a b=b,所以b a
(ⅰ)b= 時, 4(a+1)2-4(a2-1)<0,得a<-1
(ⅱ)b={0}或b={-4}時, 0 得a=-1
(ⅲ)b={0,-4}, 解得a=1
綜上所述實數a=1 或a -1
【高一的知識點總結】相關文章:
化學高一知識點總結04-03
高一函數知識點總結04-03
高一化學知識點總結04-04
高一數列知識點總結05-16
高一生物知識點總結04-04
高一集合知識點總結02-01
高一化學必修二知識點總結04-06
高一語文必修一知識點總結08-31
高一化學必修一知識點總結10-02