色www,五月婷婷深爱五月,午夜国产一级片,色噜噜综合,国产大胸无码视频,清纯美女被操黄网站在线观看,波多野结衣av高清一区二区三区

2016考研數(shù)學(xué):線性代數(shù)知識點(diǎn)需要注重哪些

發(fā)布時間:2017-03-19 編輯:bin

  2016年考研寒假復(fù)習(xí)已經(jīng)開始了,對于準(zhǔn)備早考研的考生來說寒假正好是預(yù)熱準(zhǔn)備的環(huán)節(jié),所以對于數(shù)學(xué)的基礎(chǔ)概念理論知識更需要在起步的時候打好基礎(chǔ),下面小編為大家總結(jié)考研復(fù)習(xí)初期復(fù)習(xí)一些方法和概念總結(jié),希望能夠幫助16考研人做好基礎(chǔ)備考。

  線性代數(shù)的概念很多,重要的有:

  代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(矩陣、向量組),線性組合與線性表出,線性相關(guān)與線性無關(guān),極大線性無關(guān)組,基礎(chǔ)解系與通解,解的結(jié)構(gòu)與解空間,特征值與特征向量,相似與相似對角化,二次型的標(biāo)準(zhǔn)形與規(guī)范形,正定,合同變換與合同矩陣。

  往年常有考生沒有準(zhǔn)確把握住概念的內(nèi)涵,也沒有注意相關(guān)概念之間的區(qū)別與聯(lián)系,導(dǎo)致做題時出現(xiàn)錯誤。

  例如,矩陣A=(α1,α2,…,αm)與B=(β1,β2…,βm)等價,意味著經(jīng)過初等變換可由A得到B,要做到這一點(diǎn),關(guān)鍵是看秩 r(A)與r(B)是否相等,而向量組α1,α2,…αm與β1,β2,…βm等價,說明這兩個向量組可以互相線性表出,因而它們有相同的秩,但是向量組有相同的秩時,并不能保證它們必能互相線性表現(xiàn),也就得不出向量組等價的信息,因此,由向量組α1,α2,…αm與β1,β2,…βm等價,可知矩陣A= (α1,α2,…αm)與B=(β1,β2,…βm)等價,但矩陣A與B等價并不能保證這兩個向量組等價。

  又如,實(shí)對稱矩陣A與B合同,即存在可逆矩陣C使CTAC=B,要實(shí)現(xiàn)這一點(diǎn),關(guān)鍵是二次型xTAx與xTBx的正、負(fù)慣性指數(shù)是否相同,而A 與B相似是指有可逆矩陣P使P-1AP=B成立,進(jìn)而知A與B有相同的特征值,如果特征值相同可知正、負(fù)慣性指數(shù)相同,但正負(fù)慣性指數(shù)相同時,并不能保證特征值相同,因此,實(shí)對稱矩陣A~BAB,即相似是合同的充分條件。

  線性代數(shù)中運(yùn)算法則多,應(yīng)整理清楚不要混淆,基本運(yùn)算與基本方法要過關(guān),重要的有:

  行列式(數(shù)字型、字母型)的計算,求逆矩陣,求矩陣的秩,求方陣的冪,求向量組的秩與極大線性無關(guān)組,線性相關(guān)的判定或求參數(shù),求基礎(chǔ)解系,求非齊次線性方程組的通解,求特征值與特征向量(定義法,特征多項式基礎(chǔ)解系法),判斷與求相似對角矩陣,用正交變換化實(shí)對稱矩陣為對角矩陣(亦即用正交變換化二次型為標(biāo)準(zhǔn)形)。

  最后,祝大家取得好成績!

最新推薦
熱門推薦