- 相關(guān)推薦
關(guān)于測(cè)度
關(guān)于測(cè)度
摘要:本文主要通過(guò)說(shuō)明黎曼積分的局限性,引入1種新的劃分,導(dǎo)出勒貝格測(cè)度的概念,繼而重點(diǎn)討論勒貝格測(cè)度的性質(zhì).最后總結(jié)勒貝格可測(cè)集類(lèi)和介紹構(gòu)造 上勒貝格不可測(cè)集的方法,并給出了1個(gè) 上不可測(cè)集的例子.
關(guān)鍵字:黎曼積分;勒貝格測(cè)度;可測(cè)集;不可測(cè)集
About Measure
Abstract: In this paper, the limitation in the application of the Riemann integral is pointed out, and the Lebesgue Measure is educed by introducing a new partition, and the Messurable Set and the Unmeasured Set are mainly discussed. In the end, the method to construst a Unmeasured Set in is obtained,and a example of Unmeasured Set in is given.
Keywords: Riemann integral; Lebesgue Measure; Messurable Set; Unmeasured Set
【測(cè)度】相關(guān)文章:
核心業(yè)務(wù)測(cè)度及實(shí)證研究03-21
論宏觀投資效率測(cè)度的指標(biāo)與方法03-23
中國(guó)股市流動(dòng)性風(fēng)險(xiǎn)測(cè)度研究03-18
圖像塊平坦測(cè)度與系數(shù)掃描方式選擇03-19
基于庫(kù)茲涅茨模型的西部經(jīng)濟(jì)發(fā)展階段測(cè)度分析03-29
認(rèn)知神經(jīng)科學(xué)領(lǐng)域腦電復(fù)雜性測(cè)度方法的新進(jìn)展03-18